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Abstract 

LONG-TERM CARDIOPROTECTION WITH PHOSPHODIESTERASE-5 INHIBITION 

AGAINST ISCHEMIA-REPERFUSION INJURY: ROLE OF NITRIC OXIDE 

By Vladimir Paul Daoud 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2005 

Major Director: Rakesh C. Kukreja, Ph.D. 
Professor 

School of Medicine 

Recent studies have shown that the potent phosphodiesterase-5 (PDE-5) inhibitor, 

sildenafil citrate, induces a powerful cardioprotective effect against ischemia-reperfusion 

(IIR) injury in rabbit and mouse hearts. However, the effect of this drug in inducing long- 

term protection against VR injury remains unknown. The goal of this study was to identify 

the duration of the protective window of sildenafil citrate as well as vardenafil, a more 

potent PDE-5 inhibitor. Rabbits were treated with sildenafil (0.7 mg/kg, iv), vardenafil 

(0.143 mglkg), or an equivalent volume of saline. After 24 hrs, 48 hrs, 96 hrs, or 7 days of 

vii 
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sildenafil treatment, the hearts were subjected to I/R. In the vardenafil groups, the hearts 

were subjected to I/R at 24 hrs and 7 days after administration of the drug. To evaluate the 

role of nitric oxide (NO) in cardioprotection, a non-selective blocker of nitric oxide 

synthase, L-NAME (1 5 mgkg, iv) was administered 10 minutes prior to IIR. The results 

show significant reductions in infarct size in hearts treated with sildenafil and vardenafil as 

compared to the corresponding saline controls at all time points. The protective effects of 

sildenafil and vardenafil were abrogated in animals treated with L-NAME. L-NAME had 

no effect on infarct size in saline treated control rabbits. These data suggest that both 

sildenafil and vardenafil induce a long-term protective effect against myocardial infarction 

which is mediated via a NO-dependent pathway. These studies are important in exploiting 

the clinical potential of PDE-5 inhibitors in terms of protection against 

ischemia~reperfbsion injury in patients with coronary artery disease. 
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INTRODUCTION 

Restoration of blood flow (reperfusion) to a previously ischemic organ or tissue is a 

necessary step in the recovery process; however, there is a caveat. Reperfusion can further 

propagate an injury and ultimately result in myocardial cell death. A reduction in the 

amount of viable myocardium leads to an inevitable decrease in the ability of the heart to 

perform its primary function: the pumping of blood to both the systemic and pulmonary 

circuits. Clearly, preserving any myocardial tissue after an ischemic insult is beneficial in 

the clinical realm. Such implications could have profound effects on the lives of many 

individuals who suffer from the various cardiovascular problems in our present time. 

Ischemic preconditioning is a cardioprotective mechanism against myocardial-cell 

death and cardiac dysfunction that results from the reperfusion of an ischemic heart (29). 

Murry et a1 used brief periods of ischemia to evaluate a potential preconditioning effect in 

the canine heart (26). These authors demonstrated that a brief episode of ischemia slowed 

the rate of ATP depletion that occurs during subsequent ischemic episodes. It was also 

shown that periods of intermittent reperfusion may be beneficial to the myocardium in that 

they washed out catabolites that tend to accumulate during an ischemic event. They found 

that ischemic preconditioning resulted in a significant reduction of infarct size within the 

at-risk area of the canine heart by an average of 25% when compared to controls (26). 
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Studies in both the rabbit and the canine heart have demonstrated that the 

cardioprotective effect of ischemic preconditioning appears in two phases: an acute or 

classical phase which is detectable within minutes after bI;ief episode(s) of ischemia and 

reperfusion and the delayed phase, which appears 24 hours following the initial ischemic 

insult and has been shown to last up to 96 hrs (2 1, 24). Classical forms of preconditioning 

have limited significance in the clinical realm due to the narrow time window within which 

the myocardium is actually protected. However, delayed preconditioning is relevant 

clinically in that it follows approximately 24 hours after the insult and tends to last much 

longer than classical preconditioning. The delayed phase of preconditioning can be 

produced not only via sub-lethal ischemia, but also by heat shock (10) and various other 

endogenously released triggers such as adenosine (3), norepinephrine (2), bradykinin (20), 

oxygen radicals (7) and opioids (35). It has been widely accepted that the delayed 

cardioprotective window induced by said pharmacological agents is mediated by an 

increase in NO production (4, 45). Moreover, NO may modulate KATp-channel sensitivity 

to intracellular ATP (38). Several studies have shown the importance of mitochondrial 

KATP channels in cardioprotection (8). Using diazoxide, a mitochondrial KATP channel 

opener, Garlid et a1 were able to produce significant cardioprotective effects in an isolated, 

perhsed heart (14). Furthermore, Liu et a1 found a substantial reduction in the rate of cell 

death following simulated ischemia in adult ventricular myocytes (23). The protection 

provided by the mitochondrial KATP channels was confirmed when the cardioprotective 
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effects were abolished upon the addition of 5-hydroxydecanoate (5-HD), a selective 

mitochondria1 KATP channel blocker (23). 

It is clear from the brief review above that extensive research and publications in 

the field of ischemic preconditioning have vastly extenged our understanding of the 

mechanisms underlying the pathogenesis of I/R injury. There can be little doubt that the 

elucidation of the pathophysiology and cellular mechanisms of the phenomenon of 

ischemic preconditioning have enabled us to learn a means of protecting the myocardium 

in the experimental setting. This evolving field, however, has so far failed to provide any 

direct evidence that this plethora of experimental and clinical research may one day 

translate into a clinical reality that would ultimately benefit patients with coronary artery 

disease. Despite this, the knowledge gained as a result of this research has provided us 

with tools for protecting myocytes and has enabled us to identify several classes of 

pharmacological agents that may be able to mimic the protection conferred by ischemic 

preconditioning. These include agents aimed at triggering the preconditioning 

phenomenon such as adenosine or its more selective analogues, bradykininlangiotensin- 

converting enzyme inhibitors and opioids, and those that target the putative distal mediator 

of preconditioning (mito-KATP channels), such as nicorandil. 

In the quest for novel drugs in preconditioning, Dr. Kukreja and colleagues used 

phosphodiesterase-5 (PDE-5) enzyme inhibitors for cardioprotection. PDE-5 inhibitors are 

the class of drugs used for the treatment of erectile dysfunction (ED) in men. Sildenafil 

citrate (viagram) is one such drug approved for ED (5, 18). It has a proven record of safety 

in humans as predicted by the results of extensive pharmacological and toxicological 
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testing in animals and in vitro. This has been confirmed by pharmacokinetic exposure data 

as well (1). Sildenafil selectively inhibits PDE-5, the enzyme that catalyzes the breakdown 

of cyclic-GMP, a potent, endogenous, smooth muscle relaxant. Sildenafil acts by 

competing with cGMP for the active site on PDE-5 (9). Stydies have shown that sildenafil 

also serves to enhance nitric oxide (NO)-driven cGMP accumulation in the corpus 

cavernosum of rabbits without affecting the formation of cyclic-AMP. In the absence of a 

NO drive, sildenafil potentiated the relaxing effects of NO in the isolated corpus 

cavernosum, but had no functional effect on said tissues isolated from both the human and 

the rabbit (32). Many of the biological actions of NO occur via the activation of soluble 

guanylyl cyclase (GC) and the resulting increase in cGMP tissue levels. Moreover, cGMP 

has been shown to exert a number of actions that would be expected to be beneficial during 

myocardial ischemia (44, 22, and 37). According to studies by Kodani et al, the increased 

synthesis of cGMP is necessary in order to produce cardioprotection in delayed ischemic 

PC in the rabbit heart (1 9). 

Vardenafil is the active ingredient in another PDE-5 inhibiting drug for ED called 

~ e v i t r a ~ .  Like sildenafil, vardenafil binds to the active site on the PDE-5 enzyme, thereby 

inhibiting the binding of cGMP and thus preventing the breakdown of cGMP (9). For 

cardioprotection studies, it was hypothesized that the mild vasodilatory effect of sildenafil 

could potentially release agents such as adenosine, bradykinin, or nitric oxide, which may 

in turn trigger a preconditioning-like effect in the myocardium (28). Studies have shown 

that, in the rabbit heart, sildenafil induced both acute and delayed cardioprotective effects, 

both of which were occurring through a pathway dependent on the opening of 
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mitochondrial KATP channels (28). Salloum et a1 have further demonstrated that sildenafil 

causes an increase in endothelial (eNOS) and inducible NO synthase (iNOS) in the mouse 

heart and that the magnitude of increase was more pronounced for iNOS than for eNOS 

(32). A direct protective effect of sildenafil was also shown against necrosis and apoptosis 

in cardiomyocytes through a NO-signaling pathway (1 1). Furthermore, Das et a1 found 

that sildenafil enhanced mRNA and protein content of both iNOS and eNOS. In the same 

study, myocytes treated with sildenafil prior to simulated ischemia and reoxygenation 

showed a significant increase in the anti-apoptotic protein, Bcl-2. The increased 

expression of Bcl-2 was inhibited by L-NAME, an inhibitor of nitric-oxide synthases. It 

was also suggested that sildenafil may trigger a signaling cascade that involves the 

generation of NO and the accumulation of cGMP in the myocytes through an eNOS- and 

iNOS-dependent pathway. This would therefore lead to the opening of the mitochondrial 

KATP channels and thus allow for the observed cardioprotective effects (1 1). 

Goals of the Study 

Although previous studies from our laboratory have shown the protective effect of 

sildenafil against IIR injury up to 24 hrs after treatment, it is unclear whether sildenafil or 

vardenafil have a long lasting protective effect extending beyond the 24-hour period. The 

current study was designed to identify the window of cardioprotection induced by these 

drugs in vivo. Since NO was observed to be an essential component of delayed protection 

at 24 hrs with sildenafil (32), we were interested in further identifying the role of NO in 

long-term protection with PDE-5 inhibitors. Accordingly, we addressed the following two 

questions in the present study: 



www.manaraa.com

6 

1. To determine the time course of the cardioprotective effect of sildenafil 

and vardenafil in the rabbit model of ischemiah-eperfusion injury. 

2. To show the role of NO in inducing a cardioprotective effect during 

long-term protection with sildenafil and vqrdenafil. 

Our results show that both drugs reduced infarct size following I/R injury, which 

was observed up to 7 days and possibly even longer after the treatment. Moreover, the 

non-selective nitric oxide synthase inhibitor, L-NAME (N,-Nitro-L-arginine methyl ester 

hydrochloride), blocked the protective effect, thus confirming the role of a NO-dependent 

pathway. 
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MATERIALS AND METHODS 

Animals 

Male New Zealand White rabbits, obtained from Blue and Gray Rabbitry 

(Unionville Lane, Virginia), were used in this study. The rabbits were weighed (2.5 kg to 

3.5 kg) and the values were recorded directly on the animals' ear for proper identification. 

The care and use of the animals were conducted in accordance with the guidelines of the 

Institutional Animal Care and Use Committee of Virginia Commonwealth University and 

the National Institutes of Health (NIH) Guides for Care and Use of Laboratory Animals 

[DHHS Publication No. (NIH) 80-23; Office of Science and Health Reports, Bethesda, 

MD 202051. Each group was comprised of 6 animals. 

Drug Preparation and Administration 

Sildenafil citrate (viagraB) tablets were crushed and ground to a fine powder using 

a ceramic mortar and pestle. The compound was then weighed and dissolved in 3 cc of 

sterile 0.9% saline solution (0.7 mgkg sildenafil citrate). The drug was administered 

intravenously through left or right ear via the marginal vein. Depending on the 

experimental group, the rabbits were allowed to remain for 24, 48, 96, or 168 hours (7 

days) prior to undergoing the surgery protocol as described below. L-NAME (15 mgkg) 

was given to the appropriate groups intravenously 10 minutes before ischemia. A pure 

compound of vardenafil HC1 was weighed, with 1 mg of the compound being dissolved in 
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7 ml of 0.9% saline. Each animal received 0.143 mgkg of vardenafil. The drug was given 

intravenously through the marginal vein in the ear. 

Surgical Procedure 

The rabbits were given a 1.5 cc injection (intramuscularly) that contained ketamine 

HCl(35 mgkg), xylazine (5 mglkg), and atropine. The atropine was administered in order 

to sustain an elevated heart rate throughout the entire surgical protocol. Subsequent doses 

of anesthetic were given at 40 minute intervals in order to maintain appropriate levels of 

surgical anesthesia. 

A ventral midline incision was made in the neck. A tracheotomy was performed, 

followed by intubation of the animal. The animals were ventilated mechanically with a 

positive-pressure ventilator and oxygen was administered via the ventilator as well. The 

left carotid artery was dissected and cannulated with a polyethylene (PE) catheter and 

filled with saline and heparin for continuous arterial pressure and hemodynamic 

monitoring. The right jugular vein was also cannulated with a PE catheter containing 

saline with heparin for continuous infusion of 0.9% saline solution. In some cases, 

electrocardiographic leads were attached to subcutaneous electrodes in order to monitor 

either limb lead I1 or lead 111. Baseline values for systolic and diastolic blood pressure 

were recorded, as well as values for mean arterial pressure and heart rate. 

After hemodynamic stabilization was achieved, a left thoracotomy was performed 

via the fourth intercostal space. The pericardium was then opened in order to gain access 

to the heart. Hemodynamic data were recorded again after the thoracotomy and just prior 

to the induction of ischemia. A 5-0 silk suture equipped with an atraumatic needle was 
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used to circumvent the left anterior descending (LAD) coronary artery at the halfway point 

between the atrio-ventricular groove and the apex of the heart. The needle was cut from 

the suture and the two ends were passed through a vinyl tube that had previously been 

heated and slightly melted so as to not cause damage to the, myocardial tissue and to form 

an effective snare. The smooth end of the snare was pressed securely against the heart and 

fixed in place with a hemostat in order to occlude the vessel (Figure 1). Ischemia in the 

myocardium was confirmed either by direct visualization of the tissue in situ due to the 

presence of regional cyanosis, ST elevation and subsequent depression on the 

electrocardiogram, or T wave inversion on the electrocardiogram. After 30 minutes of 

ischemia, blood pressure and heart rate values were recorded, and the snare was released. 

The suture remained in place although it was no longer preventing blood flow within the 

LAD. The area was gently massaged with a cotton-tipped applicator to promote regional 

blood flow. Reperfusion of the heart was allowed to occur for 180 minutes. Reperfusion 

was confirmed by hyperemia in the regions of the myocardium that were previously 

cyanotic. Pressure and heart rate measurements were taken every 60 minutes during the 

reperfusion phase of the protocol. To prevent desiccation, the thoracic cavity was covered 

with a piece of saline-soaked gauze. 

Upon completion of the VR protocol, the heart was removed and mounted on a 

Langendorff apparatus. The coronary arteries were perfused with a 0.9% saline solution 

containing 2.5 mM CaC12 in order to wash out any blood that remained. The suture around 

the LAD was tied off completely and about 2 ml of 10% Evan's blue dye were injected 

into the aorta until most of the heart turned blue. The excess Evan's blue dye was washed 
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away by perfusing the heart with more saline. The heart was then removed from the 

Langendorff apparatus, placed into a Petri dish, and moved to a freezer for approximately 

24 hours to facilitate the next step in the protocol. The frozen heart was then cut into 

approximately 6 transverse slices of equal thickness, startiqg from the apex and ending at 

the base. The slices were then incubated in 1% 2,3,5-triphenyltetrazolium chloride (TTC) 

solution of isotonic pH 7.4 phosphate buffer at 37OC for 20 minutes. The TTC reacts with 

NADH in the presence of dehydrogenase enzymes, causing the viable cells to stain with a 

deep red color and the dead myocardial tissue to remain pale in color. This allowed for 

easy differentiation between viable tissue and infracted gray or white necrotic tissue. 

Following the staining with TTC, the slices were fixed with a 10% formalin solution. The 

at-risk area was determined using negative staining with the Evan's blue dye. The portions 

of tissue that were not at risk from coronary occlusion stained a deep blue color while the 

at-risk regions did not. Computer morphometry (Bioquant imaging software - BI098) was 

used to measure the area of infracted tissue, the risk zone, and the whole left ventricle. 

Infarct size has been expressed as a percentage of the ischemic risk area. 

Statistical Analysis 

All measurements of infarct size and risk areas are expressed as group means * 
SEM. Changes in hemodynamics and infarct size variables were analyzed by two-way 

repeated-measures ANOVA to determine the main effect of time, group, and time-by- 

group interaction. If the global tests showed major interactions, post hoc contrasts between 

different time points within the same group or between different groups were performed 

using a t-test. Statistical differences were considered significant if the P value was <0.05. 
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Figure 1. Snare placement and infarction. After the left thoracotomy was performed, 
the LAD was identified and a 5-0 silk suture passed around it. The two ends of the thread 
were passed through the tubing and the snare was fixed in place via a hemostat. 
Confirmation of successful occlusion was achieved by noting regional cyanosis, as seen in 
this photograph. 
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RESULTS 

Risk Area and Infarct Size 

The risk areas for all of the hearts were similar in size, ranging from 46.20% + 3.48 

to 58.05% f 6.78 (Figures 2, 4 and 6). These data suggest that changes in the infarct size 

observed among various groups were not related to the percentage of the area of the left 

ventricle that was occluded by our technique. In figure 3, it is clear that the group with the 

smallest infarct size (% of risk area) was the one receiving sildenafil from 48-168 hrs prior 

to VR. Overall, it can easily be seen that the groups receiving sildenafil, regardless of the 

time interval, had much smaller infarcts when compared to the control groups (Figure 3). 

As seen in figure 5, the addition of L-NAME abolished the protection conferred by 

sildenafil. The animals receiving sildenafil 24 hrs prior to VR had an average infarct size 

of 19.77% f 1.46, which was increased to 30.77% + 1.83 in L-NAME treated rabbits. 

Such increase in the infarct size in sildenafil + L-NAME treated animals was not different 

when compared with saline treated controls (35.89% + 1.54). Similarly, the group of 

animals receiving sildenafil 168 hrs prior to I/R had an infarct size of 16.37% + 1.94 which 

increased to 3 1.61% f 1.22 following treatment with L-NAME. Again this increase in 

infarct size was not significantly different as compared to the saline treated control 

animals, which had an average infarct size of 37.28% + 1.39 (Figure 5). L-NAME alone 
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had an infarct size of 34.9 % f 0.91, which was not significantly different when compared 

to the saline treated control groups 35.89 % f 1.54 (24 hrs) or 37.28 % f 1.39 (168 hrs) 

subjected to ischemia/reperhsion protocol. 

In figure 7, the groups receiving vardenafil showed, significant protection at 24 hr 

and 168 hr (7 days) time intervals. The infarct size was 18.3 1 f 1.73 and 22.09 f 1.12 in 

the vardenafil-treated rabbits, which was significantly lower as compared to the infarct 

sizes of 33.4% f 1.03 and 34.8% k 1.61 in the saline treated controls at 24 and 169 hrs 

respectively. Similar to sildenafil, treatment with L-NAME abolished the ~ardio~rotective 

effect of vardenafil. The infarct size increased to 32.31% f 2.24 at 24 hrs and 31.24% f 

1.51 at 168 hrs following treatment with L-NAME. The infarct sizes in vardenafil + L- 

NAME treated groups were comparable to the saline-treated controls: 33.4% f 1.03 and 

34.8% f 1.6 1 at 24 and 168 hrs after treatment, respectively (Figure 7). 

Hemodynamic Findings 

The changes in hemodynamics immediately following treatment with sildenafil and 

vardenafil have been reported previously from the laboratory (28, 31). Intravenous 

administration of sildenafil citrate induced a rapid decrease in the hemodynamics as 

demonstrated by the 24.5%, 47.3%, and 38.8% decline in systolic, diastolic, and mean 

arterial pressures, respectively, within 2 min. The systemic hemodynamics bounced back 

to nearly baseline levels within 5 min after treatment with sildenafil. No significant 

changes in heart rate were observed. Similarly, after treatment with vardenafil, the mean 

arterial blood pressure decreased from 93.5 h 2.6 to 82.2 1.5 mm Hg and heart rate 
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(beatslminute) increased from a baseline value of 151 * 20 to 196 * 4.6 (mean * SEM, 

p<0.05) within 5 minutes of drug administration. 

During IIR, the heart rate, MAP and RPP are shown in Table 1 (for sildenafil and 

controls), Table 2 (for sildenafil + L-NAME) and Table 3 (for vardenafil and vardenafil + 

L-NAME). There was no significant difference in the baseline levels of these parameters 

between the different groups. Moreover, the heart rate, MAP and RPP remained 

reasonably stable throughout the reperfusion period, though there was a gradual decrease 

in all of the groups during this time. Except at the indicated time points, the mean values 

were not significantly different between the groups at any time point. Significant 

decreases in heart rate were observed in the groups treated with L-NAME. Also, the rate- 

pressure product was found to be significantly lower in the L-NAME treated groups as 

compared to the other groups during IIR. 
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U Sildenafil 24hrs 
Control 24hrs 
Sildenafil48hr.s 
Control 48hrs 

E Sildenafil 96hrs 
Control 96hrs 
Sildenafil 168hrs 

E Z i  Control 1 68hrs 

Figure 2. Risk area for long-term sildenafil treatments and controls. The risk area of 
the left ventricle was determined using Evan's blue dye. 

0 Sildenafil 24hrs 
Control 24hrs 
I Sildenafil 48hrs 

Control 48hrs 
E Sildenafil 96hrs 

Control 96hrs 
Sildenafil 168hrs 

tZA Control 168hrs 

Figure 3. Infarct size of long-term sildenafil treatments and controls. TTC staining 
was used to assess the amount of viable tissue remaining in the myocardium. Infarct size 
is expressed as a percentage of the at-risk tissue that suffered from infarction. Control 
groups received saline only. 
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0 Sildenafil 24hrs 
Control 24hrs 
Sil + LNAME 24hrs 
Sildenafil 168hrs 

E Control 168hrs 
Sil + LNAME 168hrs 

Figure 4. Risk area for sildenafil treatments and L-NAME. The L-NAME, a NO- 
synthase inhibitor, was given 10 minutes prior to ischemia. Evan's blue dye was used to 
determine the at-risk area of the left ventricle. 

0 Sildenafil 24hrs 
Control 24hrs 
Sil + LNAME 24hrs 
Sildenafil 168hrs 

E Control 168hrs 
Sil + LNAME 168hrs 

Figure 5. Infarct size of sildenafil treatments and L-NAME. L-NAME was given 10 
minutes prior to ischemia-reperfusion. TTC staining was used to assess the amount of 
viable tissue present within the risk area. 
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Table 2: Hemodynamic data for sildenafil groups and saline controls 
Group I Baseline I Pre-Ischemia I 30-min Ischemia 1 60-min 

1 Reperfusion ( Reperfusion I Reperfusion 
Sil24 hrs (Group I) 

MAP 1 8 5 f 5  1 8 3 f 2  1 7 2 f 4  1 6 9 f 5 "  1 6 ~ + 4 ~ . '  1 62f4e9f 

HR 
MAP 
RPP 

Saline Control 24 hrs (GrouplI) 
HR 
MAP 
RPP 

182f 15 
8 4 f 2  

17709f2217 

RPP 1 15528f1500 ( 16852k2046 1 15821f1425 1 13345f1952 1 12859f2121 1 11178f1864 

Saline Control 48 hrs (Group IV) 

187f 9 
100 f 7" 

10482 f 1 762a3b.c 

MAP 
RPP 

Sil96 hrs (Group V) 
HR 
MAP 

"P<O.05 vs Sil7 days, b ~ < ~ . 0 5  vs Sil24hrs, 'P<O.05 vs Sil96hrs, d ~ < ~ . 0 5  vs Sil48hrs, 'P<O.05 vs baseline,'p<0.05 vspre-ischemia, g ~ < 0 3 5  vi 30 
min ischemia. 

190f 14 
80 f 2" 

17248f 1708 

Sil48 hrs (Group 111) 

HR 

- 

RPP 1 16566f2253 ( 16759f1345 ( 14122f1109 1 11464f1042 1 11628f1603 ( 11040f1535 

Saline Control 96 hrs (Group VI) 

205 f 11 206f  12 
98 f 8" 

10260 f 1 872a.b-c 

HR 
MAP 
RPP 

Sil7 days (Group VII) 
HR 
MAP 
RPP 

Saline Control 7 days (Group VIII) 
HR 
MAP 
RPP 

169 f 6 
66 f 3eqf 

12937 f 8 ~ 7 ~ * '  

191 f 14 
96 f 6' 

967 1 f 1 1 2 8 % ~ ~ ~  

HR 

177f 12 
79 f 3 " ~ " ~  

6545 f 495a3c3de 

182f  13 
80 f 3 bs.e 

6669 + 469"C.de 

189f 8 177f 11 

185f 13 
95 f 5"' 

9503 f 1 0 1 5 " ~ ~ ~  

Values are means * SEM. HR - Heart rate (beatdmin); MAP - Mean arterial blood pressure (mmHg); RPP - Rate pressure product (mmHg/min), 

181 f 7  
9 7 f  4 

9680 f 722a,b.c 

198f 15 
7 5 f  5 

17180f1043 

199f 13 
9 4 f  5 

9458 f 922aqb-c 

143f 10' 
64 f 3e-f 

10575 f 732"' 

168f 13 
75 f 3".' 

591 8 f 526"C.de-f 

187f 7 

1 9 3 f 1 l " ~  ( 1 9 0 f 1 2 ~  
83 f 4a,b-c 

7 161 f 752a.C3d 

163f 18 
8 5 f 3  

187f 9 
94 f 4a" 

9222 f 863a.b,d 

201 f 14 
74 f 5 

17265f1038 

201 f 7 
9 3 f  4 

9054 f 687"b.d 

126 f 1 2 ~ ~ '  
66 f se3' 

9 1 10 f 976",' 

164f 15 
70 f 6e9f 

5208 f 736ac.4e.f 

190f 1 2 ~  

195f 7 
59 f 4e-f 

1 8 6 f 9  
7 7 f  3 

135 f 13~.' 
61 f se.' 

9639 f I O O ~ ~ . '  

158f 11 

78 f 4' 
6380 f 660%"~ 

1 8 8 f 8  
78 f 2e3f 

6342 f 364a9c.4e.f 

1 9 7 f 8  
65 f 3 

15905 f 1 132 

196 f 7 
82 f 4a.b,C 

6959 f 709a9c.de.f 

168f 10 
55 f 3e2f 

l 5 8 f  14 

73 f 5".' 
5678 f 823a.c34e 

181 f 9 
75 f Fe.' 

5868 f 378"c9de.f 

148 f 
6 9 + 4  

12044 f 858e3f9g 

193 f 6ab 
73 f 3e.f 

5579 f 5 16a.c3de.f 

15Of 15 

71 f 6e*f 
5217 f 8 1 6 " ~ ~ ~ ~  

159 f 14 
59 f 6".' 

154 f 14 
58 + 6e.f 

174f 11 
71 f 2".' 

5277 + 2 1 2 " ~ ~ ~ ~ "  

145 f 8e,f*g 
69 f 2 

1 1 5 1 3 f 647e,f,g 

196 f 6"b 
69 f 4e.f 

5037 f 6194C-de3f 

170f 13 
64 f 4e3f 

4362 f 4 0 9 ~ ~ . ~ " . '  

14 1 f 6e3f3g 
6 6 f  3 

1 0773 f 807"~'~~ 

196f 7"b 
64 f 4e.f 

4365 f 542ac9de9f 
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Table 3: Hemodynamic data for 
Group 

Sil24 hrs (Group I) 
HR 
MAP 
W P  

Saline Control 24 hrs (Group 11) 
HR 
MAP 
RPP 

Sil24 hrs + L-NAME (Group 111) 
H R 
MAP 
RPP 

Sil 7 days (Group IV) 
HR 
MAP 
RPP 

Saline Control 7 days (Group V) 
HK 
MAP 
RPP 

Sil7 days + L-NAME (Group VI) 
HR 
MAP 
RPP 

L-NAME Control (Group VII) 
HK 
MAP 
RPP 

Values are means * SEM. HR - Heart 
"P<0.05 vs Sil24hrs, b~<0 .05  vs saline 24hrs, 'P<0.05 vs saline 7 days, d~<0.05  vs baseline, 'P<0.05 vs pre-ischemia, f ~<0 .05  vs 30min ischemia. 

and controls 
30-min Ischemia 

169f 6 
66 + 3d.e 

12937+887d.e 

l77+ 12 
79 f 3a.d 

6545 f 49sd 

135 + I lb,' 
84 f 5" 

13124f 1376"' 

197f 8 
65 f 3b.C 

15905 f 1 1 3 2 ~ ~ '  

sildenafil, sildenafil 
Baseline 

182f 15 
8 4 f  2 

17709f2217 

1 8 7 f 9  
100f 7 

10482f1762" 

169f 20' 
84 + 8 

15938 f 1138 

198 f 15 
75 + 5b 

171 80 f 1043~.' 

199+ 13 
9 4 + 5  

9458 f 922" 

182f 13 
8 4 + 4  

17508 f 1453~.' 

182 + 8 
8 5 f  6 

17837 + 920b.' 
rate (beatdmin); 

+ L-NAME 
Pre-Ischemia 

190f 14 
80 f 2 

17248f1708 

191 f 14 
9 6 f 6  

9671f1128" 

144f 16 
107+ 14 

15488 +2421 

201 f 14 
7 4 + 5  

17265 f 1038~~' 

201 + 7 
93 + 4  

9054 f 687" 

158f 1 1  
91 f 3 

171 88 f 1 264b.' 

191 f 9 
101 f 23 

17426 f 805"' 
MAP - Mean 

60-min 
Reperfusion 

143 + 10" 
64 + 3d,e 

10575 + 732'" 

182+ 13 
8 0 f  3ad 

6669 f 469d 

130 + 8b.C 
87 f 3".' 

12474 f 907~,' 

148 f I o'.'",~ 
6 9 + 4  

12044 + 858b.c.4e.f 

196f 7ab 
64 + 4d.e.f 

4365 + 542d," 

1 18 f 8',d 
7 4 + 7  

9802 f 293b,c,de,f 

138f 15' 
6 8 f  1 

1076 1 f 999b.c.de 
(mmHg/min). 

120-min 
Reperfusion 

126 f 1 2d,e 
66 f sd," 

91 10 f 976d," 

168f 13 
75 f 3d,e 

59 18 + 526d,e 

128f 10' 
7 9 f  3 

1 127 1 f 700b.' 

145 f 8C,d,e,f 

6 9 + 2  
1 15 13 f 647b3'.d".f 

196f 7 
82 f 4" 

6959 f 709~," 

180-min 
Reperfusion 

135 f 13d.e 
61 +5d,e 

9639 f 1 0 0 3 ~ ~  

164 f 15 
70 f 6d.e 

5208 f 736d.e 

119f 9' 
76 + 3 

1001 5 + 524b.c,d 

14 1 + 6c,d.e3f 

6 6 + 3  
10773 + 807~,','",~ 

193 f 6" 
73 f 3d,e 

5579 + 516d.e 

196+6" 
69 f 4'" 

5037 f 619d.e 

145 + 1 
82 f 4" 

14022 + 1 126"',~," 

129 + 8b.c.d 
86 f 3a.d 

12390 f 690~.' .~" 

129 + 
77 f 6 

1 1859 f 506~,' .~" 

177f 13 
7 5 f  3 

14346 f 103Sb.' 
arterial blood pressure (mmHg); RPP - Rate pressure product 

160f 19 
70+ 1 

12609 f 1 1 84b,c,d.e 

155 f 20' 
6 9 2  1 

12286 f 1 397b.c.d.e 
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Table 4: Hemodynamic data for vardenafil, vardenafil + L-NAME and controls 
Gram I Baseline I Pre-Ischemia 1 30-min Ischemia 1 60-min 

I Reperfusion I Reperfusion ( Reperfusion 
Vardenafil24 hrs (Group I) 

RPP 1 10482 f 1762" 1 9671 + 1 128 1 6545 f 495a3e 1 6669 f 469".' 1 5918 f 526",",' ( 5208 f 736ae.f 

Vardenafil24 hrs + L-NAME (Group 111) 

HR 
MAP 
RPP 

Saline Control 24 hrs (Group 11) 
HR 
MAP 

MAP 
RPP 

143 f 10' 
64 f 3e-f 

10575 f 732e-f 

182 f 13 
80 f 3' 

HR 

Vardenafil7 days (Group IV) 

182f 15 
84 f 3 

17709f2217 

187f 9 
1 0 0 f 7  

193f 8 180f 17 
8 3 f  8 

188 1 1 + 32 1 8b.d 

MAP 
RPP 

126f 12e-f 
67 f 5e.f 

9 1 10 f 976e,f 

168+ 13 
75 + 3e,f 

HR 

Saline Control 7 days (Group V) 

190f 14 
8 0 f  2 

17248f1708 

135 f 13".~ 
6 1 f se.' 

9639 f 1 003~,' 

164f 15 
70 f 6".' 

1495 18 
107f 10 

2394 1 f 3 1 37ab.c.d 

197f 8 
7 5 f 5  

17180 f 1044 

MAP 
RPP 

169f 6 
66 f 3e.f 

12937 f 887 

198 f 15 

HR 

Vardenafil7 days + L-NAME (Group VI) 

RPP I 17837 f 9 2 0 ~ ~ ~  1 17426 f 805"~ 1 14346 f 1 0 3 5 ~ ~ ~  ( 12609 f I I 84bdef 1 12286 f 1397b-d3e*f 1 10761 f 999b-dse.f 
Values are means 7t SEM. HR - Heart rate (beats/min); MAP - Mean arterial blood pressure (mmHg); RPP - Rate pressure product (mmHg/min). 

145 + 18 
86 f 8".' 

14 105 f 1 1 84b.d.f 

201 f 14 148 f I 145 f 8e,f 
7 4 f 5  

17265 f 1038~  

201 f 7 199f 13 
9 4 f 5  

9458 f 922" 

MAP 
RPP 

L-NAME Control (Group VII) 
HR 
MAP 

'P<O.05 vs Var24hrs, b ~ < ~ . 0 5  vs saline 24hrs, 'P<O.05 vs Var 7 days, d ~ < ~ . 0 5  vs saline 7days, eP<0.05 vs baseline, f ~ < ~ . 0 5  vspre-ischemia. 

1912 14 
9 6 f  6 

141 f 6e,f 

171 f 11 1 13 1 f 1 3C-e-f 1 12 1 f 9b.d3e3f I 1 17 f I O ~ - ~ - '  . I 1 1 l f 1 2b,d,e.f HR 

177f 12 
79 + 3e 

145 f lod 
6 6 f  10' 

10263 f 663',' 

65 f 3  
15905 f 1132~  

196f 7 
9 3 f 4  

9054 f 687' 

1 8 9 f 8  
87 + 13 

19593 f 1488~~ '  

182f 8 
8 5 f  6 

134f l l d  
52 f 8b.f 

8674 f 852".' 

6 9 f  4 
12044 + 8 ~ 8 ~ ~ ~ ~ '  

193 f 6esf 
8 2 f  4 

6959 f 709".' 

104f 7 
1971 2 f 1 1 Bb,' 

191 f 9 
101 f 23 

55 f 10' 
83 1 1 f 1 054".~ 

1 96 f 6a'-esf 1 1 96 + 7ac.e-f 

6 9 + 2  
11513 f 647b,e,f 

7 3 f 3  
5579 f 5 1 6a-',e.f 

8 2 f 6  
1 1805 f 993'3e9f 

177 f 13 
75 f 3 

6 6 f  3 
10773 f 807b-esf 

6 9 f  4 
5037 f 6 1 9a.c-e-f 

82 f 1 
1 1200 f 908b-d.e,f 

160f 19 
7 0 f  1 

64 f 4 
4365 f 542a.c,e,f 

74 f 5 
9792 f 656b.d.e3f 

155 f 20 
6 9 f  1 

7 2 f  7 
8748 f 3 1 9b.d-e-f 

138 + lsd 
6 8 f 1  
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DISCUSSION 

Ischemic heart disease, as the underlying cause of most cases of acute myocardial 

infarction (AMI), congestive heart failure, arrhythmias, and sudden cardiac death, is the 

leading cause of morbidity and mortality in all industrialized nations. In the United States, 

ischemic heart disease causes nearly 20% of all deaths (approximately 600,000 deaths each 

year), with greater than half of these deaths occurring before the patient arrives at the 

hospital, primarily due to arrhythmias and cardiac arrest. An estimated 1.1 million 

Americans will have a new or recurrent AM1 this year, and many survivors will experience 

lasting morbidity, with progression to heart failure and death. As the population grows 

older and co-morbidities such as obesity and diabetes become more prevalent, the 

enormous public health burden caused by ischemic heart disease is likely to increase even 

more. Two critical factors are required in order to improve the outcome of a patient 

suffering fiom an acute, ischemic event. First, the patient must survive any arrhythmias. 

The majority of deaths due to AM1 occur prior to hospitalization, due primarily to 

arrhythmias and cardiac arrest. Although greater access to automatic defibrillators and 

optimization of CPR protocols offer tremendous potential to save lives, it is remarkable 

that survival is still dependent upon early CPR and rapid defibrillation. Indeed, survival 

rates fiom cardiac arrest have shown only marginal improvements over the last 30 years, 
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which further underscores the need for novel therapies and resuscitation strategies. 

Second, infarct size needs to be limited. For patients with AM1 who do not succumb to 

out-of-hospital arrhythmias and are successfully transported to the hospital, the prognosis 

is dependent on the amount of myocardium that is lost as a result of ischemia/reperfusion 

injury. There is no question that timely reperfusion (by thrombolysis or percutaneous 

transluminal coronary angioplasty [PTCA]) can salvage ischemic myocardium - and has, 

indeed, become the standard in-hospital treatment for AMI. Although greater benefits can 

conceptually be achieved by continued efforts to implement even earlier restoration of 

coronary flow, delays in seeking medical attention, together with inherent logistic and 

temporal limitations in initiating thrombolysis or PTCA, make it unlikely that additional 

and substantive improvements in morbidity and mortality can be achieved by reperfusion 

therapy alone. 

Limitation of myocardial ischemidreperfusion injury is also of paramount 

importance in the setting of global myocardial ischemia associated with coronary artery 

bypass graft (CABG) surgery. Despite the considerable progress that has been made to 

date, high-risk subsets of patients (i.e., repeat CABG, unstable angina, LV dysfunction, 

diabetes, old age, etc.) continue to exhibit post-operative complications, including 

prolonged contractile dysfunction (stunning), low-output syndrome, peri-operative 

myocardial infarction, and cardiac failure requiring prolonged intensive care. Thus, both 

in patients experiencing an AM1 and in those undergoing CABG surgery, there is a 

compelling, but still unfulfilled, need to protect the ischemic myocardium. 
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In recent studies from Dr. Kukreja's laboratory, it was shown that PDE-5 inhibitors 

sildenafil (viagraB) and vardenafil ( ~ e v i t r a ~ )  induce preconditioning-like protective 

effects against ischemia-reperfusion injury in adult rabbit hearts. Sildenafil administered 

30 minutes (acutely) or 24 hours (delayed) prior to ischemia-reperfusion has previously 

been shown to be an effective means for cardioprotection in the rabbit heart (28). 

However, the efficacy of these drugs in causing long-term protection following 

ischemidreperfusion injury has not been investigated. In this study, we wanted to test if 

sildenafil could outlast the second window of protection seen in classical ischemic 

preconditioning. Therefore, along with 24-hour delayed protection studies with sildenafil, 

we administered sildenafil 48 hrs, 96 hrs, and 7 days prior to undergoing the ischemia- 

reperfusion protocol. We found significant protection at all time points. At 48 hrs, we 

observed reduction in infarct size from 34.38% % 1.46 in saline controls to 15.15% 2.01 

with sildenafil treatment. On day 7 after administration of sildenafil, the infarct size was 

reduced to 16.37% * 1.94 as compared 37.28% % 1.39 in saline control (p < 0.05). 

Furthermore, we observed a similar reduction in infarct size with vardenafil when 

administered 24 hrs or 7 days prior to ischemidreperfusion. This confirms our hypothesis 

that PDE-5 inhibitors have a "class effect" in terms of long-term cardioprotection. 

Transient decreases in systemic pressures have been reported as acute responses to 

both drugs. For example, Ockaili et a1 (28) reported that intravenous administration of 

sildenafil caused a rapid decrease in hemodynamics as indicated by the 24.5%, 47.3% and 

38.8% decline in systolic, diastolic, and mean arterial pressures, respectively, within 2 min 

of receiving the drug. The systemic hemodynamics returned to nearly baseline levels 
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5 min after treatment with sildenafil. The effect of orally administered sildenafil citrate on 

systemic hemodynamics was milder and slower compared with the intravenous dose of the 

drug. The orally administered sildenafil caused a 9.2%, 12.5%, and 10.3% decrease in 

systolic, diastolic, and mean arterial pressure, respectively, ,after 30 min of treatment with 

the drug. This hypotensive response remained significantly depressed even at 60 min after 

oral administration of the drug. No changes in heart rate were observed. However, we did 

not see any changes in baseline hemodynamics 24-168 hours after drug administration. 

Although L-NAME abolished cardioprotection at all time intervals, suggesting that there 

must be some up-regulation of iNOS andlor eNOS protein levels following treatment with 

these drugs, this increase may not be enough to elicit a systemic hypotensive response. 

Chen et al suggested that hypovolemic hypotension has a preconditioning effect in the 

rabbit heart. They found that hypovolemic hypotension preconditioning significantly 

improves cardiopulmonary function and increases NO formation and that the protective 

benefit associated with hypovolemic hypotension preconditioning of the heart may be 

regulated through NO mediated mechanism (6). Therefore, hypotensive preconditioning 

could be one of the mechanisms producing a PC-like effect in our long-term studies. 

The exact mechanism of long-term protection by PDE-5 inhibition is not filly 

understood. However our data suggest that NO generated after treatment with sildenafil or 

vardenafil plays an essential role in long-term protection. Treatment with a non-selective 

blocker of nitric oxide synthases (L-NAME) abolished the protection conferred by 

sildenafil as well as vardenafil. The infarct size was increased to the size similar to saline 

controls (Figures 5 and 7). NO has been shown to play a prominent role both in initiating 
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and in mediating the cardioprotective response of preconditioning. Several studies from 

our laboratory have demonstrated that delayed pharmacological PC is mediated by the 

upregulation of iNOS in the myocardium (40, 46, and 47). Bolli and colleagues have 

shown that NO is the key trigger as well as a key media$or of PC in rabbit and mouse 

hearts (4, 16). In the Langendorff isolated perfused mouse heart model subjected to 20 

minutes of global ischemia and 30 minutes of reperfusion, pre-treatment of the animals 

with sildenafil reduced myocardial infarct size 24 hours later compared with saline controls 

(32). 

Sildenafil-induced protection was abolished by a selective iNOS inhibitor, 1400W. In 

these studies, sildenafil did not alter pre-ischemic or post-ischemic coronary flow, 

indicating that its cardioprotective effect may be independent of its vascular response 24 

hours later. RTPCR showed a transient increase in the levels of both eNOS and iNOS, 

peaking at 45 minutes (eNOS) and 2 hours (iNOS) after sildenafil treatment and returning 

to baseline levels several hours later. The magnitude of increase was much higher for 

iNOS mRNA as compared with eNOS mRNA. In addition, cardiac expression of iNOS 

and eNOS protein was significantly elevated 24 hours after sildenafil treatment. These 

studies suggest that sildenafil induces delayed preconditioning 24 hrs later and that this 

response is primarily mediated by NO derived from iNOS. Similarly in isolated 

cardiomyocytes (1 I), sildenafil caused a significant increase in mRNA and protein 

expression of iNOS and eNOS (to a lesser extent). Also, sildenafil-induced protection 

against necrosis and apoptosis was abolished in myocytes deprived of iNOS, but not in 

eNOS gene knockout mice. Interestingly, sildenafil-treated myocytes demonstrated an 



www.manaraa.com

26 

early increase in the Bcl-21Bax ratio following simulated ischemia-reperfusion, which may 

have been responsible for the anti-apoptotic effect of sildenafil. The increase of the Bcl- 

21Bax ratio, as well as the anti-apoptotic effects of sildenafil, were inhibited by treatment 

with the NOS inhibitor, L-NAME, thus suggesting the role of NO signaling in the 

protective effect of the drug against apoptosis. In the present study, the role of NO derived 

from nitric oxide synthase is clearly indicated by the ability of L-NAME to block the 

protection; however, we have not identified the specific isoform of the enzyme. As 

mentioned above, although iNOS is involved in cardioprotection 24 hrs later with 

sildenafil, we do not know whether the same isoform of the enzyme is implicated in long 

term protection observed at 48-168 hrs following treatment with sildenafil or vardenafil. 

Wang et a1 suggested that cardioprotection at 72 hrs after the initial bouts of ischemic 

preconditioning was mediated by nNOS and cyclooxygenase-2 (42). Surprisingly, the 

iNOS expression was not increased at 72 hours; however, upregulation of nNOS was 

evident at both the mRNA as well as protein levels. These changes were accompanied by 

an increase in myocardial nitritehitrate. Furthermore, the nNOS-selective inhibitors N- 

propyl-1-arginine or S-ethyl N-[4-(trifluoromethyl)phenyl] isothiourea completely blocked 

the protection of delayed preconditioning at 72 hours, whereas the iNOS-selective inhibitor 

S-methylisothiourea had no effect (33). It is possible that a similar shift in the source of 

NO occurs following long-term protection with PDE-5 inhibitors. Future studies will 

address this important issue. 

There are several possibilities by which NO may induce a cardioprotective effect. 

Enhanced synthesis of cGMP has been shown to be a requirement for the protection in 
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delayed-ischemic PC in the rabbit hearts (19). In these studies, the role of cGMP did not 

exist during the early (acute) phase of ischemic PC. It was proposed .that NO participates 

in PC via two distinct mechanisms; it triggered delayed ischemic PC on acutely via a 

cGMP-independent mechanism and yet it mediated delayed PC 24 hrs later via a cGMP- 

dependent mechanism. Furthermore, cGMP may activate PKG (protein kinase G), which 

can subsequently open mitochondrial KATP channels (17). Conceptually, sildenafil plays a 

pivotal role in cardioprotection because it inhibits the enzymatic hydrolysis of cGMP and 

maintains the tissue accumulation of cGMP, thus leading to the downstream protective 

mechanism that involves the PKG-activated mitochondrial-KA~p channel. In addition, it 

was proven that myocardial cGMP content was in fact enhanced following the 

pretreatment rats with the cardioprotective dose of sildenafil (1 1). Further studies that 

would prove helpfd in this area would be to examine tissue levels of cGMP and NO at the 

appropriate time intervals. Quantifying those concentrations in the tissues would allow us 

to determine the thresholds these biochemical mediators must reach in order to achieve a 

cardioprotective effect with PDE-5 inhibitors in the heart. 

The opening of mitochondrial KATP channels may be one of the important mechanisms 

of long-term cardioprotection achieved with PDE-5 inhibitors. Several studies have now 

conclusively demonstrated that opening mitoKATP channels plays an important role in 

ischemic as well as pharmacological preconditioning in the heart. In the rabbit studies, 

Ockaili et a1 found that both acute and delayed cardioprotective effects were blocked by 5- 

HD, suggesting that opening of mitochondrial KATP channels does in fact play an important 

role in the infarct size reduction by sildenafil (28). Mitochondria are known to play an 
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essential role in cell survival by ATP synthesis and maintenance of ca2' homeostasis. 

Opening of the mitoKATP channel partially compensates the membrane potential, which 

allows for additional protons to be pumped out, forming an H' electrochemical gradient for 

both ATP synthesis and ca2' transport (39, 15). The delayed PC could be through the 

signaling cascade leading to the synthesis of iNOS, generation of NO and opening of the 

mitoKATP channels as described previously (27,33, and 43). 

In summary, we have shown that a novel class of PDE-5 inhibitors, including 

sildenafil and vardenafil, can reduce myocardial infarct size following 

ischemia/reperfusion up to 7 days following treatment. Our results also suggest that such a 

long lasting protective effect of these drugs is mediated by NO generated from nitric oxide 

synthase. These studies could be important in terms of harvesting the clinical potential of 

phosphodiesterase-5 inhibitors for protection of the heart against ischemiaheperfusion 

injury in patients with coronary artery disease. 
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